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ABSTRACT

Okamura, I_dyohisa. Ph.D., Purdue University, June 1963.

Major Pro lessor: Rufus Oldenburger

Much work has been done in the field of optimum nonlinear control

of multivariable systems. This effort has been largely mathematical and

programming actual optimum control schedules is still difficult and

laboriols. Mere direct methods te achieve an optimum controller for

mu!tivariable systems as a function ef the state variables may be ouite

useful in many cases. This thesis proposes the extension ef Oldenb_rgerls

approach to optimum nonlinear control ef single variable systems te that

of a simple class of multivariable systems. The class next in complica-

tion to single input-single output systems may be the one where the

system has two inputs and one output. This class may be treated as a

single input-single output system except where one ef the inputs and the

time derivative of the ether are bounded. This class of systems is to be

optimized such that the time duration of the transient is minimized as

well as the maximum ever or under swing, etc. After the transient

vanishes both inputs are te be brought to their reference values as

quickly as possible. A controller is designed which yields an optimum

transient. The controller uses a check-decision process which does not

arise in a single input-single out_t system. The approach developed

here is direct and straightforward rather than abstractly mathematical°



INTRODUCTION

This thesis concerns optlmum nonlinear control of a simple class of

multlvarlable systems. The control system is composed of a plant to be

controlled and a controller _hle_ optimizes the response ef the controlled

quAntlty ef the plant according to specified criteria. This type of

control has been treated byman_ engineers and mathematicians.

In 19_A R.Oldenburger I derived a control scheme to obtain the optimum

transient of the system with a bounded input. He did this Mile he was

studying an aircraft engine-propeller system. D.McDonald 2 in 1950

published a paper on optimum nonlinear control of second order systems

with bounded input. This was followed by papers from 1951 to 1959 by

A.Hopkin 3, Uttley and B.H.Ha_ond h, I.Fl_gge-Lotz 5, L.F.Kazda 6,

T.M.Stout 7, and others. L.M.Silva 8, T.Bogner 9 both in 195h andS.S.L.(h_ng ]0

in 1955 treated systems of third and higher orders. Nonlinear systems

were covered by R.Oldenburger, J.C.Nicklass and E.H.Gamble II in 1961.

In 1953 D.W.Bushaw 12 published a paper concerned with a treatment

on determining the switching for optimum control. In 1956 R.Be!Iman,

I.Glicksberg and O.Gross 13 applied Bellman's dynamic programming technique

to optimum nonlinear control systems. In 1957 L.S.Pontryagin IA presented

a new principle applicable to multivariable control systems with bounded

inputs. More detailed discussion about Pontryagin's maximum principle

was given by L.I.Rozonoerl5o J.P.X4SalIe 16 in 1960 published a proof of

the existence theorem for optlm_ transients. In 1962 several papers on

optimum nonlinear multivariable control systems were published by
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B.Frledland 17, L.Markus and E.B.Lee 18, E.R.Rang 19, Yu-Chi Ho 20,

G.BoyadJieff, DoEggleton, M.Jackues, H.Sutabutra and YoTakahashi 21 and

others. The works cited above are largely mathematical and program_in_

actual optimum control mchedules by these methods is difficult and

laborious. Furthermore, practical applications have not been extensively

treated° This thesis proposes the extension of Oldenburger's appreach 1

to optimum nonlinear control of single variable systems to that of a

simple class of multivariable control systems where a practical

engineering example is treated. The a_roach developed here is direct

and straightforward rather than abstractly mathematical°

Oldenburger treated systems with one controlling variable and one

controlled quantity WAere the controlling variable or its time derivative

is bounded. The systems next in complication to single input-single

output systems are those _ich have one contrelled quantity and mere

than one controlling variable° However, for the ca_e efa system where

each of the controlling variables but none of the time derivatives are

bounded or, conversely, where the time derivative of each controlling

varlable but none of the controlling variables are bounded, the treatment

is the same as for single input-single output systems. The reason for

this is given as follows. If each controlling variable is limited, the

of the controlling variables can be made to take on any value

between two limits where one of these limits is the sum of the upper

bounds and the other the sum of the lower bounds of the controlling

variables. Thus the sum ef the controlling variables is treated as a

single input. The same argument holds for the case Hen the time

derivative of each controlling variable is bounded but not the

controlling variables themselves.
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Multiple input-single output systems Which are not equivalent to

single input-single output systems as explained above are those which

have inputs composed of a mixture of bounded variables and variables

with bounded derivatives. Dividing the inputs into two sums, one ef

which contains the variables whose derivatives are bounded and the ether

containing the remaining variables which are limited° The above systems

may be treated as dual input-single output systems° Thls is the case

with whidh this thesis is concemedo

The control system treated in this the_is has a physical interpre-
6

ration as fellows. The controlled quantity is the deviation in the level

ef the surface of a liquid in a tank from a reference value. One

controlling variable is the rate at which liquid flows out of the tank

threu@h a pump. The ether is the position ef a valve controlling flew

to a tank as s_own in Figure Io The acceleration and deceleration of the

pump connected to the motor are limited whence the rate ef change ef flow

out of the tank is bounded. The position of the valve is usually li.dtedo

We have a case where one of the controlling variables and the time deriva-

tive of the other controlling variables are bounded. Our object is to

bring the controlled quantity to zero in an optimum sense ( the time

duration of the transient is minimized as well as the maximum over or

under swing, etc. ) after the disturbance dies out. One of the

controlling variables can be made to be "bang-bang"_ but the ether car_o

The time optimal control of this system is net always uniquely

determined. We consider three hypothe|ee to find the optimum control

schedule for whiah we derive two kind ef control functions. Since the

controlled plant has t_ inputs and one output, the output can be set

equal to zero while the inputs are not zero ° Hence we consider the



control schedule, after the controlled quant£ty becomes zero, in which

beth controllin_ variables are brought to zero in minimum time while the

controlled quantity remains zero o Thus the control ef the syatem

consists of two stages. In the first stage the contrelled quantity is

to be brou_t to zero. In the second stage t_e controlling variables are

brought to zero° The programs te achieve the eptlmum control schedules

for the above two stages are designed from practical considerations. The

controller must go through a check-decision process in addition to exam-

ining signs of switching functions. This does not arise in the came of

single input-single output systems, It Ij mathematically proved that all

transients bmsed on the above control schedules are optimum.

The closed loop system with the eptlmum controller was tested en an

electronic analeg c_plter. RelayB were used in logical circuits which

realize the optimum control schedules. Oood agreement was found between

theory and analog simulation results.



5

LIQUID SURFACE CONTROL SYSTEM

The following differential equation is associated with the tank In

Figure 1

A d h(t) = el(t)- qe(t) (1)
dt

where

h(t) = level of llouid surface ( deviatl_n from reference value )

qi(t) - rate of incoming flow ( deviation from reference value )

qe(t) - rate of cutgolng flow ( deviation from reference value )

A - constant area of licuid surface

The rate of Incoming flow is taken proportlona] to the position of the

valve 'Wnlch is limited, _.eo

qi(t) - okJ_(t) (2)

IA (t)l -= L (3)

where

_(t) = position of the valve ( deviation from reference value )

o(p L - positive constant

The rate qo(t) of outgoing flow is prooortional to the revelutlon per

unit time, i oeo rlm of the motor° Hence it follows that

qe(%) - -#n(t) (&)

where

n(t) - revolution per unit time of the pump and motor ( deviation

from reference value )

@

= positive constant
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The angular acceleration and deceleration of a motor connected to a

pump are usually limited.

I d n(t)
dt

It is assumed that

N (5)

where N is a _sitive constant. It is also assumed that qi(t) and

_qo(t)/dt can arbitrarily be made to take on any instantaneous values

in the range -_ L_L and - _N--_N respectively. If h(t) - dh(t)/dt

-O, the systmm is said to be in the equilibrium state. This does not

imply, however, that the controlling variables are at their reference

values, namely n(t) -_(t) _ O. In this thesis, the system is said to

be in the reference state if h(t) - n(t) -_(t) _ O.
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NORMALIZE]>SYSTEM

Wenormalize Relations (I), (3) and (5) as

Y'(T)- Xl(T). X2(T)

IX_'(T)J_ I

IX2(T)l2 K

by introducing the following dimensioniesJ quantities

Y(T)- A h(t_ XI(T) . _ X2(T) .
N_ _ , N _ , " N_'

K m
_L t.tg_ -

(6)

(7)

(_)

(9)

where

t o - arbitrary time origin

- arbitrary time scaling factor ( may be unit time )

and a prime stands for the derivative with respect to time T,



STAGES OF OPTIMIZATION

We consider two stages which the syBtem will takeo In Stage 1 the

contro]led quantity Y(T) is net identically zero. In Stage 2 th-_

controlled quantity Y(T) is identically zero but not both XI(T) and

X2(T) are mere. In Stage 1 a control is said to be optimum if the time

duration and maximum over ( or under ) swing of the transient are

minimized° If the above control is not unique, the control is said to

be optimum when the area between the transient trajectory and the T

axis is made as small as possible while the time duration and over ( or

under ) swing of the transient are kept at their minimum values. In

Stage 2 a control is said to be optimt_n if both XI(T) and X2(T) are

made to be zero in minimum time°

control both in Stages 1 and 2o

Suppose that

- K_XI-CK

Our object is to obtain the optimmm

(i0)

at some time T - TR° It is possible to keep XI(T) in the Range (iO)

after T = TRo For examp]e, if we set XI' - 0 from T - TR, we obtain

XI(T) = Xl(T R) for T _ TR, where XI(T R) satisfies Relation (IO). On

the other hand, the variable X2(T) can be made to take on an arbitrary

instantaneous value between -K and K. Therefore, if Relation (lO)

holds, it is possible to obtain the relation X2 - - Xl, or y1 = O.

Hence, if the relation

Y(T) - 0 (ll)
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is also obtained at the instant T = TR, it is possible to makeY(T)

identically zero from the time T - TR. Conversely, if Relation (i0) is

not satisfied at any _nstant, we cannot set X2 - - XI, ioeo Y' / O.

Hence, the controlled cuantity Y(T) cannot be made zero. As shown

above, the cuantity Y(T) can be made to be identically zero if and only

if Relations (I0) and (ii) are sLmultaneously satisfied at some time.

._'eintreduce the following functions for Stage I:

w_e_e

T
0

T

?iT) - - I x2( _ ) dA
0

Y(T)- #(T)- _(T)

It fellows that

* Y(0) (12)

_'(T) = _(T) (a)

_'(T) - -X2(T) (b)

(o)- o (c)

I_ (T)I__1 (d)

l?'(r)l__ K (e)

(13)

(15)

Relations (i0) and (ii) are ecuivalent to the fol]owing:

- K __ _'(T) __ K (16)

@(T) - _(T) (17)

The variable X2 may change suddenly at any instant and therefore

the derivative Y' is not unicuely determined at that instant. Since

the value of X_ m_7 be chosen at will subject to restriction imposed by

Relation (8) it is sufficient to know the value of _I in order to
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determine the deriv_tlve Y'. Thus the values _(0) and _'(0)

detemmlnethe initial conditions Y(O) and Y'(O), ;_,mre the function

_(T) and its derlvat_ve _'(T) are continuous. Instead of directly

treating, Y(T)we consider the functions _ (T) and _(T) throughout the

analysis of transient responses in ,'Stagei°
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OPTIMUM CONTROL IN THE FIRST STAGE

In this section we treat the control of Stage i. In this stage it

is desired to make _(T) s _(T) in minimum time such that the area

between the transient resp_onse trajectory and the T axis is mi_%Imisedo

Althou_h analog computer results ef optiu transients will be shown

later in terms ef the controlled quantity Y(T), for the sake of clarity,

all posLihle typeg of transients are explained here in terms of

functions _(T) and _(T). There are six major distinct types of

transients in Stage 1 which a,-e labeled mr_ns_ent Types A throu_ F _n

the discussion below depending on the oen_lltions at T - O. Each major

transient type _my have two or more sub types of transients. The

treatment of the cases where Y(O)_O is identical to that when Y(O)_Oo

This is t_-ue because the types of optimum transients possible for

Y(O)"O are nirror Lmages about the T axis of those for Y(O)='Oo

Treatment of the case for Y(O) - 0 is given only for XI(O)_'O since the

types of transients for _i(0)_0 and Y(O) - 0 ar_ the mirror images of

their counterparts.

In the figures for illustration of Stage ], the transient time is

denoted by TR, ioeo Stage 1 terminates at the time T - T R. It is

proved in the following sections that for an optimum transient in Stage

1 both the controll_ng variable X2 and the time derivative of the other

controlling variable Xll must be set at all times at their extrem_n

values. Hence_ for such a transient we have
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+,,- xI, - i (18)

H,'- +-K (19)

Since the treatment of the optimum transient is identical for Y(O);-O

and Y(O)<O, we shall develope the optimum control schedule considering

that Y(O) satisfies

Y(O) _ 0 (20)

The problem is to determlnn the optimum values for _" and _' at

T - 0 as functions of the initial conditions, Noting that _ (0) - 0

from Relation (15-o), we find the solution of Equation (19) to be

= : _ (21)

Plotting the above relation in Figure 2, we obtain two trajectories

denoted by _ 1 and A 2 corresponding to the positive and negative

signs, respectively, which o_cur on the right hand side of Relation

(21). Thus, the trajectories _I and _2 are the upper and lower

boundaries, respectively, of a family of trajectories representlng the

function _ (T).

In order to determine the value of _"(T) at T = O we consider the

case

_" =I

Plotting Relation (22) for various initial conditions we ex_mlne

(22)

whether or not the above choice is optimum. The examination could be

made by choosing _" = - i instead of Relation (22), but as we shall

see, Relation (22) represents the proper choice at T - O for larger

class of initial conditions. Referring Relations (12) and (15-a), there

results

¢' - Z • Xl(O) (23)



IA

Y(o)

P1

0

P5

FIGD]_E 2 A FAMILY OF _ TRAJECTORIES FOR 4_,,- 1

AND A FAMILY OF _ TRAJECTC[dES FoR _' - *.K
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Plotting Relation (24) in Figure 2 we obtain a family of trajectories

designated by rl through r 5 for Y(O)_-O. The case for Y(O) - 0 is to

be treated later in this section° This family of trajectories is

classified as follows. By Relation (23), for each trajectory _i ( i -

1,2,..,5) there exists a point where the slope of the trajectory is -Ko

•_nls _int is denoted by Pi as shown in Figure 2. The point Pi lies

above or on the trajectory A l' below or on the trajectory _ 2, or

between the trajectories h I and A2o There are five cases for T _ 0

which must be considered depending on the location of the points Pi

with respect to the trajectories _ 1 and A 2.

Consider a special case represei_ted by the trajectory C2 and its

point P2, where the point P2 is on the trajectory _l. The functions

@(T) and _(T) Which correspond to the trajectories _2 and _l

respectively satisfy Relations (16) and (17) at the _nstant when the

r_int P2 is obtained. Let the above _nstant be designated by TR2o

Hence, the controlled quantity Y is zero at T = TR2 and can be kept

identically _ero for T _ TR2. By Relation (22) the trajectory ["2 is

concave uT_ with the slope [ncreaslng at the maximt_n rate. Therefore,

any other _ trajectory with the same initial slope as the trajectory

r"2 cannot attain the slope equa] to or greater than -K before the

instant T = TR2 , i.eo the time duration TR2 is the minimum transient

time and the trajectory _2 is the unique curve which yields the

minimmm transient time TR2. Since the trajectory _l is the uDper

boundary of a family of _ trajectories, there exists no other

trajectory which intersects the trajectory _2 before or at the instant
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T - TR2o Thus it has been proved that the trajectories r2 and £or

T _ TR2 uniquely determine the optimum transient _n Stage 1 under the

given initial conditions° The above type of optimum transient is

called Transient Type A o

Another special case concerns the trajectories _ and _2 where

the point P& of the traJecotry PA is on the trajectory _2o Since the

trajectory _2 always has slope -K and the slope of _& at the point P&

is -K, the trajectory _2 is the tangential line of the trajectory P&

at the point P_. By the same reason as for Transient Type A, except

that the trajectory A 2 is here the lower boundary of a family of q)

trajectories, the trajectories F A and A 2 uniquely determine the

optim_ transient in Stage i for T __ TRA where the time TRA corresponds

to the point PA° The type of transient obtained above is called

Transient Type Bo

In the above cases the _ trajectory corresponding to r2 or _&

is concave up with its slope increasing at the maximum rate and the

trajectory corresponding to _i or 4 2 is the upper or lower boundary

of a family of trajectories° The optimum transient for Stage 1 is

obtained without changing the values of X I' and X2 for the above two

cases. Types A and B are special cases which wDuld not often occur but

theoretically important in determining control functions° Types C

through F discussed below are the usual types which would generally be

found o

If a _ trajectory with its slope increasing at the maximum rate

starts at the same point as the trajectory ['2 with greater slope than

that of ['2p the trajectory _l in Figure 2 would result. Here the
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point on F 1 denoted by P1 at which the slope is -K lles above the

trajectory _Io Though the case in which the point P1 exists for T_O

is shown in Figure 2, the point P1 may be found for T _ O In some other

eases in which the trajectory _i has the greater initial slope. It

will be proved in the next section that the trajectory _I is not the

optimal one but that the optimal trajectory must be concave down with

its slope decreasing at the nmxlmum, rate near T - O_ To show this let

_" he given by

- - 1

The solution of the above equation is then

_' = -T + XI(O) (26)

T2- - ----- ÷ Xl(O) T + ¥(0) (27)
2

In plotting Relation (2?), two cases must be considered° For the first

case, the plot of Relation (27) designated by _ as shown in Figure 3(a)

has slope -K at the point denoted by P which is on or below the

trajectory _i wh,re the trajectory _ 1 is the same as in Figure 2.

Since the trajectory P is concave downi it intersects the trajectory

_i with a slope equal to or greater than -K. The above intersection

point is <_enoted by R in Figure 3(a). For the case in which the point

P is on the trajectory A l, the points P and R coincide w_th each other°

Since the slop-, of the trajectory 4 1 is K, the slope of the tnaJectory

[_ at the [¢int P is less than K. By the above arguments the functions

_(T) and _(T) s_tisfy Rel_tions (16) and (17) at the point R.

Therefore_ the controlled quantlty Y can be kept identically zero from

the instant designated by T R wh5 _h corres;_nds to the point R as shown

in Figure 3(a)o
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Y(O)

0

R P

TR
(a)

Y(o)

0

S

TR
(b)

FIGURE 3 TRANSIENT TY_ES C

(a) TRANSIEb!T TYPE CI

(b) TRANSIE_T TYPE C2

i
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For the second casep the trajectory determined by the plot of Relation

(27) has slope -K at a point above the trajectory _ l. This case is

illustrated in Figure 3(b). Denote the curve APR' which corresponds to

Relatlc, n (27) by P'o The point at which the trajectory r' has slope

-K _s designated by P. The point P may exist for T _ O. The point R w

is the _ntersecticn point of the trajectories r' and 4 1 . Since the

trajectory U' _s concave down, it has a slope less than -K at the point

R _ Since Relation (16) is not s_tisfied at the i_nt R' the controlledo l

quantity Y cannot be made identically zero. The optimum _ trajectory

w_ll be obtained, then_ by the following procedure. Choose a point on

the curve segment PR' calling th_s point the switching point So At the

IoInt S we set _" - 1 so that the concavity cf the _ trajectory is up

and maximum, de adjust the point S such that the _ trajectory

inter_ezts the trajectory 4 1 with slope -Ko The (_ trajectory obt;_ined

abow; im designated by _ in Figure 3(b), The _ntersect_on point of the

"C. _ector_.es _and _i is denoted by R.

That such points S and R exist may be seen as follows. Let the

point S coincide with the point P. The trajectory [" has a slepe

greater than -K so that the slepe ef the trajectory [_ at the point R is

also greater than -K. As we move the point S along the trajectory [''

for increasSng time, the slope of the trajectory "[_ at the point R

continuously decreasea and the p_int R approaches the point R'o V_en

the point S reac_ea R', the points S, R' and R coincide together and the

alope of the trajectory F" at this point is less than -K. Aa shown

above the slope of the trajectory P at the point R changes from a value

greater than -K to a value less than -K as the point S moves from P to
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Rio Hence, there must exist a point S on the trajectory r I such that

the trajectory r has s slope -K at the point R.

The functions @(T) and _(T) determined by _ and 4 I of Figure

3(b) satisfy Relations (16) and (17) at the instant designated by TR

which corresponds to the point R. Hence, the controlled quantity Y can

be kept identically zero from the instant T - TR. It will be proved in

the next section that the _ and • trajectories determined in the above

two cases are optimal. The type of optimum transient for the first

case is called Transient Type C1 and for the second case Transient Type

C2. Transient Types C1 and C2 are the class of transient ty_es denoted

by C. As shown above, for Transient TypesC, the initial selection of

the controlling variables is Xl' -- 1 and X2 " Ko

For the next type of transient called Transient Type D, we treat

the trajectory designated by ['3 in Figure 2 which corresponds to

Relation (2&). The initial slope of the trajectory ['3 is between the

Initial slopes of the trajectories F 2 and r& in magnitude. Therefore,

the point denoted by K3 at which the trajectory _3 has slope -K is

between the trajectories _I and 4 2. The optimal trajectories

representing the functions _(T) and _(T) are determined as follows.

Plot the trajectories _3, _i and _2 again in Figure &. Draw the

tangential line to the trajectory _3 at the point P3' ioeo let the

tangent line have slope -Ko Let the intersection point of the above

tangent line and the trajectory _ 1 be denoted by S which is called the

switching point° Let the line composed of the l_ne segments OS and SP3

be designated by _o The line segment SP3 correspond_e to the eouation

_' - -K° Relations (16) and (17) are satisfied by the functions _(T)
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FIGb_%E A OPTIMUM TRAJECTORIES FOR TRANSIE_ TYPE D



22

and _(T) representing the trajectories [_3 and 41, respectively, at

the instant T - TR where the time TR corresponds to the point P3"

Hence, the controlled quantity Y can be made identically zero for T _ TR.

The proof that the trajectories r 3 and & yield the optimum transient

for Stage 1 will be given in the next section. Thus, it has been shown

that the initial setting of the controlling variables for Transient Type

D must be XI' - 1 and X2 - -K for optimum control.

Now consider the plot ef Relation (24) represented by the trajectory

r 5 in Figure 2 where the point P5 on the trajectory [_5 lies below the

trajectory _ 2o Again P5 denotes the point on the trajectory F 5

where the slope is -K. This case may occur when the value of XI(O) ,

i.e. _'(0) is small. Since the trajectory _5 is concave up, it

intersects the trajectory 42 twice. At the first intersection point

the slope of the trajectory r 5 is less than -K so that Relation (16)

is not satisfied, i.e. the controlled quantity Y cannot be made

identically zero. The slope of the trajectory r 5 is always increasing

at the maximum rate and becomes -K at the point P5, where Relation (16)

is satisfied For the first time. However, Relation (17) is not

satisfied at the point P5 so that again the controlled Y cannot be made

zero. After the point P5 is attained, the trajectory _5 intersects

again the trajectory _ 2" Two cases are considered with respect to the

value of the slope of the trajectory _5 at the second intersection

point of the trajectories r 5 and _2" For the first case the slope of

the trajectory _5 at the second intersection _int is equal to or less

than K. The trajectories r5 and A 2 for this case are shown in Figure

5(a). The second intersection of the two trajectories is denoted by R,



23

Y(O)

T

o i '
P5

_2

(a)

Y(o)

k TS TR

P5 c4

(b)

_2

FIGURE 5 OPTIMb_4 TRAJECTORIES FOR TRANSIENT TYPES E



2A

and the corresponding time by TR. The trajectory r5 has a slope

greater than -E at the point R. By the above arguments the functions

(T) and _(T) corresponding to the trajectories r 5 and 42,

respectively, satisfy Relations (16) and (17) at the instant T - TR.

Hence, the controlled quantity Y can be made identically zero for

T __T R .

Consider the second case where the trajectory r 5 has a slope

greater than K at its sezond intersection point w_th the trajectory /_2

which is designated by R' as shown in Figure 5(b). The trajectory [_5

must have the slope -K at some point on the curve segment of the

trajectory r-5 determined by the points P5 and R'. If the concavity of

the trajectory r-5 is changed at some ooint denoted by S on the curve

segment PR l by setting _" " - l, we obtain the trajectory designated by

_, where rfrom the point S on _s concave down with its slope decreasing

at the maximum rate. By reasoning similar to that employed for

Transient Type C2, the point S can be chosen so that the trajectory r

will cross the trajectory _ 2 with the slope Ko This may be understood

if we consider the m_rror images, with respect to the T axis, of the

trajectories r-, r, and _l in Figure 3(b) and compare them with the

trajectories r, P5 and _2 in Figure 5o Let the intersection point of

the trajectories rand _2 be denoted by R and the corresponding instant

by TR. The trajectories rand _ 2 determine the functions _(T) and

_(T) which satisfy Relations (16) and (17) at the _nstant T - TR so

that the controlled cuantity Y can be kept Idertlcally zero from that

instant° The type of trans[e_t for the first case is called Transient

Type El, and for the second case Transient Type E2. Transient Types



25

E 1 and E2 are classed as Transient Types E. It will be proved in the

next section that Tranl_ent Types E are optimum. As shown above, for

Transient Types E the controlling variables at least near T - 0 must be

set XI' - 1 and X2 = Ko

We have treated above all possible cases of optimum transients

occuring for the initial conditions Y(O) _ O. Now we are going to deal

with the optimum control for the case in which Y(O) - Oo As explained

in the begining of this sectloniti_ sufficient to treat only the csse in

which XI(O)_O , in investigating the optimum transients with the initial

condition Y(O) - O, This type of transient is called Transient Type F.

If Y(O) - O and O_XI(O) __ K Relations (16) and (17) are satisfied.

Hence, the controlled quantity Y can be made identically zero for T _ O,

i.eo Stage 1 does not exist° For Y(O) - O and XI(O)_-K , Transient Type

F is treated below. For T =SmO, Y becomes positive, for any XI' and X2

at T - 0 under Condltions (7) and (8), for some positive number _ . The

reason for this is shown below. Since XI(O)='K by the assumption made

for Transient Type F and JX2_ __ K by Relation (9) it follows that

y1 . X1 ÷ X2_ O at T - 0 (28)

Hence, we have

Y(_)- Y' dT + Y(O) :D 0 (29)

If we choose the time origin at T - _ we obtain the initial condition

Y(O) =_ Oo Therefore, Transient Tyoe F reduces to Transient Type C.
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PROOF THAT TRANSIENTS ARE OPfI_M

In the last section we treated all pcssible transient types which

may occur in Stage l o '.'leshall prove in this section that these ty_-'s

of transients are all o_tlmum and uniquely determined so that the

quantity Xl' and X2 must be kept always at their extremum values in

Stage lo It was shown that Transient Types A and B are optlmtmo It

was also shown that Transient Type C2 _s included by Transient Type E 2,

By the same reason Transient Type C1 is involved by Transient TyT_ F_o

It was explained that the treatment of Transient Type F is equivalent

to that for Transient Type C. Thus, in this section, it is sufficient

to prove that Transient Types D, E1 and E 2 are optimum.

Before dSscusslng the problem further we define the controlled ares

as followS. The controlled area is that area between a _ trajectory
@

and a _ trajectory _n Stage I°

The optimality cf Transient Typ_ D is _roled first, We shall prove

that the traJector_es r 3 and _ in _igure A determine the unlql/e optimum

trans_ento As explained in the last section a transient blme TR is

obtained such that the trajectory _3 with s!epe -K coincides with the

trajectory _ at T - T R. S_nce the slope of _3 is increasing at the

maxdmum rate and is equal to -K at T - TR, the slope of _3 is alwayu

less than or equal to -K for T_T R. Also, any _ trajectory ether than

_3 cannot have a slope eoual to or greater than -K for T _ T R, Hence

the ti_,e duration TR _s the mln{mum transient time and the trajectory
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_3is optimum and uniquely dete1_Ined_ We will prove that the

trajectory ;% yields the minimum controlled area while the minimum

transient time TR is kept° The proof is by contradiction° Assume that

there exists a _ trajectory called _* which yields less controlled

area than the trajectory 4 and coincides with the trajectory _3 at the

instant T = TR. Since the trajectory _ lles under r 3 for T":T R, the

trajectory _* must be over some finite time interval above _ in order

to make the controlled area lesso However, the trajectory _* cannot

lie above _ since 4 is the upper boundary of all trajectories 4" for

the tlme interval corresponding to the segment OS° Therefore, the

trajectory 4* must exist, at least partly, above the line segment OS.

However, the trajectory 4* having passed hhe time corresponding to the

point S and once exceeding the line segment SP cannot reach this segment

again. The reason for this is that the trajectory _ is decreasing at

the maximum rate for the llne segment SFo Therefore, the trajectory 4"

cannot coincide with _3 at the inst_nt T = Tp_. This violates the

ass_[.tion previously stated for the trajectory _*o Hence, there

exists no _ trajectory yielding less controlled area than _ . As seen

f,_m Figure A, the controlled quantity Y for Transient Type D _s always

positive and decreasing monotonically, i.eo the transient has no ever or

under swing° This concludes the proof of ont_mality of Translent Type Do

Nex*_, we _reat Transient Type E1. We shall prove below that the

trajectories _5 and 4 2 in Figure 5(a) determine the optizLm_ transient.

These traJeztories are plotted in Figure 6 with notation unchanged.

Consider any trajectories for $ (T) and _(T) where the _ trajectory

has the same initial conditions as those for ["5° We plot the above

trajectories of _ and _, and designate them as _5" and _2",
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respectively, in Figure 6. Here, the trajectory £]2 is the lower

boundary of _ trajectories° Since the trajectory _5 is concave up

with its slope increasing at the maximum rate, the trajectory _ 2*

e.xlsts below _ 2. Suppose that the trajectories _5" *and _2 intersect

eac_.lother tw_ceo The case _n which the second intersection Point does

not exist wil __be treated in the same marker as for the a_ve case, ioeo

consider that the second intersection _.o_nt exists at T = OOo Let the firs_

intersection :_o_nt be denoted by Q* and the second by R*o Also let _.he

points at which the traJec_.orles _5 and _2 intersect be designated by

Q and R as in Figure 6. Since the trajectories _2" and _'5" lie above

and below, respectively, the trajectories _2 and _5' the point Q*

exists before the point Q and R* after R as shown in Figure 6. We will

show first that thin controlled quantity Y cannot be made identically

zero at the instant corres._¢nding to the _nt Q*. Since the slope of

the trajectory _5 is increasing at the maximt_i rate and becomes -K at

the point PS, the trajectory _5" cannot have a slope greater than or

ecual to -K before the time corresponding to the point P5 o Hence_ the

slope of _5" at the point Q* is less than -K and Relation (17) is not

satisfied. %D_us the quantity Y cannot be made identically zero. Since

the second Inter_ection point R_ exists after the ti_e T - TR the

.
transi_it t_me determined by the trajectories _5" and _2 cannot exist

before the instant T - TR. This is sufficient to show that the

trajectories _5" and 42" are not o_timum and the unique optimum

trajectories are determined by the traJec_.ories ['5 and _2.

Finally, we treat Transient Type E2o The trajectories r and 4 2

shown in Figure 5(b) are plotted again in Figure 7 with notation
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unchanged. Weshall prove below that the time duration TR 18 the

minimumtransient time and is uniquely determined by the trajectories

and A 2" Consider another pair of _ and _ trajectories and

t'* 2*designate them respectively as and 4 o Since the trajectory A 2

is the lower boundary of _ trajectories, d 2 may not be below A 2. The

trajectory _" is concave up with its slope increasing at the maximum

rate for 0 _ T _ TS so that the trajectory F* cannot lie above F for

this time interval° The trajectories _* and A2* intersect each other

at a time T _ TS, but the controlled ouantity Y cannot be set identically

zero at that instant. The reason for this is the same as that for

Transient Type E1 shown already°

The point on [_* at the time T = TS denoted by S* in Figure 7 can

exist only below the point S. Let TR* be the transient time when the

trajectories _* _nd A_ intersect. Suppose that the time TR* is less

than TRo Then the trajectory [_* must cross the trajectory P with its

slope greater than that of _ at some time T between Tsand TR*o But the

slope of _ is decreasing at the maximum rate. Hence, the slope of r*

is greater than that of F at the instant T - TR*o Also, the trajectory

r has greater slope at the time T - TR* than at T - TRo Therefore, the

slope of P* at the instant T - TR* is greater than K° Thus, Relation

(16) does not hold for the function _(T) re_resented by the trajectory

_* at the instant T - TR* , _.Co the trajectories _* and A 2 are not

admissible. It was proved above that the minimum transient time must be

TR and this is uniquely determined by the trajectories _ and _ 2. As

seen from Figures 6 and 7, non optimum trajectories yield greater under
i

swing than the optimum trajectories. This concludes the proof ¢,f

eptlmallty for Transient Type E2.
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CONTROL FUNCTIONS

In the previous s_-ctions all the possible optlmu_ transients in

Stage 1 were shown and proofs of optimality were given. A control

which always gives the opt[m_zm transient must be able to predict which

type of optimum transient will follow so that the proper values of XII

and X2 may be chosen. The functions, called the first and second

control functions, will be introduced in this section. The sign of

each of these control functions which de_nds on the 5rdt_al conditions

is used to determine the o_,timum selection of XI' and X2.

The first control function is u;_ed in d_st]nguish!ng whether

trajectory obtained by setting XI! = 1 is above, on or below the

trajectory ['2 shown in Figure 2o _hen the _ trajectory is below A 2,

the second control function is used to determine whether the

trajectory is above, on or below the trajectory r A.

Derivation ¢f First Control F,mction

Assume that Y(O)_'O. We consider what relat_onshlp between Y(O)

and XI(O) will exist when the trajectory [_2 as sh°wn in Figure 2 is

obtalredo Since the sloFe of the trajectory [_2 at the time TR2

corres_ondlng to the po5nt P2 is -K, it follows from Relation (2/+) that

_' ,_ Tp_ • Xl(C) ,= -K (30)

The time TR2 g_ven by the above relation _s negative or ze_ when

Xl(O) ,- - K (31)
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@

In this case the optimal values of XII and X2 are made independent of

the control functions° This is diecussed in the Appendix. Hence, we

assume here that

Xl(O) < - _ (32)

At the time T = TR2 the trajectories ["2 and _ i coincide with each

other so that _ = 4o Therefore, by Relations (21) and (24) we bare the

following expression

_-_- TR2 + XI(O) TR2 + Y(O) - KT - 0 (33)

2

where the positive sign in the right hand side of Relation (21) has been

chosen. Substituting TR2 of Relation (30) into Relation (33), and

arranging it we have

(_ - _ - Y(o)• _{K. Xl(o)}{ 3 K- x1(O)} - 0 (3_)

Next we assume that Y(O)_O which corresponctm to the mirror image

about the T axis of the trajectory [_2 shown in Figure 20 The plot of

the above mirror _mage of the trajectory P2 is designated by _2" in

Figure 8 while the mirror image of the trajectory _ 1 is the trajectory

2. The point P2* is the mirror image ef the point P2, ef Figm-e 2.

Here the trajectory r2 _ intersects the trajectory 4 2 with a sl©pe K

at the [mint P2*o Following the derivation of Relation (34)_ we can

find the expression at the time TR2* which corresponds to the point P*,

ioeo

__ _ I __y(o) " _ { K -- _l(O) } { 3 K 4_ XI(6 ) } . O (35)

_Ye assume, as _n the first case that the time TR2* is [_sit_ve, ioeo

referring to Relation (26) we have

Xi(O ) 7 K (36)

The case for which Xl(O) _ K is referred to the Appendix.
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wheF_

Equations (3A) and (35) may be combined into the single equation

E1 " 0

El, called the first control funct._.on,is given by

E l - 171 * ½ ( K-IXll )( 3 K * IXll )

provided

Y:_0,

or

Y_0_

(37)

(3e)

X1 _ - K (39)

xI _- K (&O)

Here Y(O) and XI(O) have been replaced by T and X1 respectively s_nce

the time axis may be shifted arbitrarily.

As may be seen from the definition of the first control function,

it has the following properties° The case where _i(0) _ 0 is

represented by the trajectory _I of Figure 2 or _l of Figure 8.

Here the trajectory _i* is the mirror image of _I o Similarly the

case in which _TI(O)<O corresponds to the trajectory _2 of Figure 2

and %* of Figure 8, the trajectories r 8 and ra W are In mirror image

relatlonsh_po

Derivation of Second Control Function

We are going to derive the relation in terms of the quantities Xl(O)

and Y(O) corresponding to the trajectory _A shown in Figure 2o Thus assume

first Y(O)_O° The relation in cons_deratlon may be derived in the same

manner as that for derivation of Relation (3&) except that we choose

here the negative sign in the right hand side of Relatiom (21). After

calculation it follows that

_ _ - 7(0)- ½ {K + Xl(O)}2 . o (_I)
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Assuming next that Y(O)-,O, we can derive the relation

corresponding to Relation (35), i.e.

- _ - - Y(o)- ½{K - Xl(O))2. o (_2)

Similarly as in the previous section Relatiors(&l) and (&2)may be

combined into the single e_uation

_2 " 0 (/43)

where _2 is called the second control function and is given by

E2 - IYI - ½ ( K- IXll )2 (_)

Here again Xl(O) and Y(O) have been replaced by X 1 ond Y

respectively. In discussing geometrical properties of the second

control function, the argument for the first control function holds here

after replacing the trajectories r 2 and _l respectively by H A and J2°

As seen from the derivation of the first and second control

functions, if _l _ O, it always follows that _9='0. The only case

when the sign of _2 cannot be determined by observing the sign of Y_l

is when )-7-1-:0. Hence, as seen in the next section, we design the

control schedule such that the sign of the first coI_trol function is

checked first. If this sign is negaMve, the sign of the second control

function is monitored.
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OPTDfUH CONTROL S_EE_JLE IN STAGE i

With the aid of the control functions obtained in the last section

we can obtain all the information needed for determining the optimal

values of XI' and X2o A schematic diagram of an optimum schedule,

called Program I, is shown in Figure 9. This schedule always g_ves the

optimal choice of X I' and X2 _n Stage 1 based on the instantaneous

values of Y(T) and XI(T). Hence, Program I yields one of Transient

Types A through F. Interpretation of the schematic diagram shown in

Figure 9 will be given below with an example.

Program I is composed of two kind of elements, called Checks and

Decisions. The function efa Check is to monitor a state of the system

at every instant and the function of a Decision is to determine the

optimal selection of XI' and X2 based on Checks. A Check and Decision

process always begins with Check I and ends at one of Decisions 1

through 5. A series of Check and Decision processes will continue until

Decision 5 is re_ched. If Decision 5 is attained, Program I stops its

function and Program II which is ex[;la_ned in the next section begins.

Consider, for example, the case in which Transient Type E 2 as show_

in Figure 5(b) takes place. Since Y(O)_O, monitorlng of the state of

the system _oes from check I to Check II-l. Sensing Xl(O)"=-K, Program

I monitors next Check III-l, where _l(C)-cO is obtained. Hence, check

IV-I must be made and _2(0)"O is sensed. This results in Decision 2,

where X1 ' - 1 and X2 - K are selected. This selection agrees with the
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result explained in Traslent Type E2o The above Check and Decision

process does not change until the first intersection point of the

trajectories r and 4 2 is obtained. At the first intersection point

the state Y = O is sensed by Check I. Then Check II-3 must be made

where _-K is monitored so that Decision 2, the same as before, is

selected. Instantaneously, the trajectory _goes below _2 and Y-:O

holds in Check I. Therefore, Check II-2 must follow and Decision 2

results. The above process continues until the _In_ P on [" is obtained

where Y':O and X1 - K. At the instant after the point P is obtained

there occurs a change in Check II-2, i.e. Xl='K instead ef X1 _-=K holds.

However, since _l:'O at this instant, Decision 2 is still kept by the

result of Check III-2o At T = TS, it fellows that Y':O, XI='K and

_i " O. For the first time Decision 2 is cancelled at this In,tant

and Decislon & is chosen through Check I, C_eck II-2 and Check III-2.

This precesl centlnues uatll the time T - TR.

Y - 0 and X1 - K and Decision 5 is selected.

terminates at _is instant.

At T - TR we obtain

Program I ends and Stage 1
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OPTIMUMCONTROLS(]4EDULKIN STAGE2

Previous sectiens cencerned the optimum centrel in Stage I.

The centI_lled quantity is brought te zere at the end ef Stage 1. This

dees net imply, hewever, that the centrelllng variables XI and X2 are

alse brought te zere. In this sectien we shall 4evelepe a centrel

schedule in which the variables X1 and X2 become zere in minimum time

while the centrelled cuantlty T is kept zere.

%_ben Stage 1 terminates it fellews that

Y=O

iXli_ K

We take the time erigin at the end ef Stage i.

(AS)

Then the above relatlens

are the initial cenditiens _n Stage 2. In erder te keep Y identically

zere threughout Stage 2 we must set the derivative T' alse _ere, i.e.

Y' " X1 _ X2 " 0

or

Since the variable X2 can be made te take en any value subject te

Restrictlen (8) and since the variable X1 has the initial cendltien as

in Relatien (&6), the variables X1 and X2 satisfy Relatlen (&7) at T - Oo

The eptin_im centrel in Stage 2 il develeped belew. The varAables

X1 and X2 must appreach zere in minimum time in such a manner that

Relatien (_7) is satisfied. The variable X2 can be set sere at any time

but enly the derivative ef X1 may be centrelled. Hence, the eptimma



centrel is obtained when the variable X1 approaches zere at the maximum

rate. This implies the fellewing: If the variable XI is pesltive its

derivative XI' must be -Io Similarly, if the variable X1 is negative

the derivative XI' must be I. In beth cases the abselute value ef X1

decreases teward zere so that Relatien (_6) helds net enly at T B 0 but

alse at any instant in Stage 2. Whenever Relatien (A6) holds Relation

(L7) can be satisfied as previously explained. If the variable X1 is

zere, the variable X2 is also set zere.

The eptimum centrel schedule develeped abeve is shown by a schematic

diagram ca_led Program II as in Figure I0. The interpretation ef this

diagram is as fellews. Program II begins if and enly if Pre_ram I

terminates. As in Pregram I, Pregram II has tw_ kind of elements, Check

and Decisien. An eptimum precess must ge te Check first where the sign

ef X1 is menitered. If the variable X1 is _esitlve, Decisien 1 will be

selected and XI' = -i and X2 - - XI. A similar argument applies te the

case when the variable X1 is negative. When beth X1 and X2 vanish

Decisien 3 is selected and the system remains at the reference state.

At this time Stages 1 and 2 terminate.
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ANAL(O COMPUTER SIMULATION RESULTS

The results of the optimum control developed in the prev_ous

sections were verified on an electronic analog computer. Two examples

are illustrated in Figures Ii (a) and (b)o Here an upper figure shows

the transient of the controlled quantity Y for each case and a lower

figure refers to the corresponding response of the controlling variables

X1 and X2. Figures Ii (a) show Transient Type F and Figures Ii (b)

Transient Type E1.

Relays were used in the logical switching circuits both in Programs

I and II. As seen in lower figures, the controlling v_riables fluctuate

momentarily at the relays switching instance. However, th_s does not

significantly affect the controlled quantity since the controlled

quantlty is the integrated value of the controlling variables and

integration has a low pass filter effect which smoothes the response.

In fact, as shown in the upper figures of Figures ii, the actual

responses of the controlled quantity d_-viate from the theoretical values

only near T - O and at the end of Stage I.



_Inb-q

I_ i"-i

C)

E._l .c_ (j-)

' II
I

C3

E-o

M

l

/

E-I

\

,o

O

_4 _4

I,-I

E-a

I-q _-.I

3_
H

r-q
r4

0



L5

CONCLUSION

A direct and straightforward technique to solve a simple class of

optimum nonlinear multivarlable control probelms has been presented.

A system shown as an example has two inputs and one output where one of

the inputs and the time derivative of the other are bounded° If the

time optimum control is not unloue, some other criteriom must be added

such that the maximum over or under swing of the transient, the area

between the transient and the time axis, etc. are minimized. It is

shown how to program an actual optimum control schedule. It is

theoretically proved that all the transients based on the above control

schedule are optlm_n and the theory is verified on an electronic analog

computer.
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APPENDIX

In deriving the first control functlen we assumed Relatlens (39) er

(&O). The reasen for this is explained below. We consider only the

case for Y_'O since the treatment is identical for Y"cO.

Suppe se that

Y_'O, X1 : - K (&8)

at T - O. This cenditien yields the time TR2 negative where the time

TR2 is given by Relation (30)_ The following cases may occur. A

traJectery obtained by setting _)" - 1 touches or intersects the

trajectory 4 1 for T_O as shewn in Figure 12 where the first case is

represented by the trajectory r2' and the second case by r3'. The

points at which the trajectory _2' er _3 has slepe-K is respectively

en er belew the traJectery _ I" Hence, if we substitute the values

XI(O) and Y(O) for the first case in Relation (38) we obtain

El(o) - o

Similarly for the second case it fellows that

 I(o) o

However, the trajectories ["2' and r3 t lle above the trajectory r2

for T_O. Since eur object in deriving the first control function is te

knew whether a _ trajectory for _" - 1 is above, en er below the

trajectory _2 for T-O, the above two cases are undesired results. This
@

conflict aay be everceme by the following procedure. We design the

centrel schedule such that if Relations (&8) are satisfied the optimal
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T

FIGURE 12 UNDESIRABLE CASES IN

DERIVING FIRST CONTROL FUNCTION
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selection of XI' and X2 is the same as for the case in which _'i(O)_-O

and Relations (39) slmultaneously held. Then Transient Type B is obtained

which is ,ptimma. Similarly, we conclude that if

• _O, X1 __ K (_9)

we let the ,primal selection of XI' and X2 be the sane as for the case

in which _i_-O and Relations (_O) holdo
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